Portable Smoke Detector In Best

Description

PORTABLE SMOKE DETECTOR

The conflagration of fire is still a serious problem caused by humans, and houses are at a high risk of fire. Recently, people have used smoke alarms which only have one sensor to detect fire. Smoke is emitted in several forms in daily life. A single sensor is not a reliable way to detect fire. With the rapid advancement in Internet technology, people can monitor their houses remotely to determine the current condition of the house. This paper introduces an intelligent smoke alarm system that uses ZigBee transmission technology to build a wireless network, uses random forest to identify smoke, and uses E-charts for data visualization. By combining the real-time dynamic changes of various environmental factors, compared to the traditional smoke alarm, the accuracy and controllability of the fire warning are increased, and the visualization of the data enables users to monitor the room environment more intuitively. The proposed system consists of a smoke detection module, a wireless communication module, and intelligent identification and data visualization module. At present, the collected environmental data can be classified into four statuses, that is, normal air, water mist, kitchen cooking, and fire smoke. Reducing the frequency of miscalculations also means improving the safety of the person and property of the user.

1. Introduction

The wide deployment of sensing technologies in our daily living environments and the pervasive usage of mobile devices bring about great opportunities for the deployment of smoke alarms [1]. At present, most of the traditional smoke alarm systems consist of sensor modules, transmission lines, and monitors, each of which is connected to a sensor module [2]. Therefore, there is a defect in the accuracy and timeliness of the traditional alarm system. The misinformation of the fire alarm caused by water mist or oil smoke causes unnecessary losses to people. People spend a long time in vehicles on roads after homes and offices [3, 4]; they want to get the right fire alarm while they are in the distance. And there are two main reasons for these problems.

(1) The Way to Judge Whether or Not Fire Is Too Simple. The traditional smoke alarm system only detects a single environmental value. If the detection value exceeds the threshold, it is judged to be a fire. There are many uncertainties in the fire scene that will cause the smoke alarm system to be unable to accurately determine the fire, such as temperature, combustible gas concentration, smoke particle concentration, and barometric pressure, which can lead to false positives, omission, delay reporting, and other phenomena which occur frequently [5].

(2) Inadequate Component Connection. The traditional smoke alarm system use copper wires, insulated wires, or cables to connect detectors and alarms. This kind of connection has many disadvantages, such as copper wire’s price, large consumption, and weak anti-interface ability. On the other hand, the copper wire easily wears at high temperatures, resulting in the alarm system maintenance being very complex, reducing the reliability of the traditional smoke alarm system [6].

At present, some new smoke alarms use LoRa to achieve wireless communication, and they do not need to install wires. This solves the problem of difficult installation of traditional smoke alarms and enables people to view the status of the alarm remotely, so as to ensure the timeliness of the alarm. But there was no change in the way the fire was judged, and the accuracy of the alarm was not improved.

For the first question, we believe that using the machine learning classification algorithm and a variety of sensors to monitor the maximum real environment can restore the real scene of the environment approximately and greatly enhance the accuracy of fire warning, while reducing false, omission, and late alarms’ frequency.

When designing the communication system, we want it to be able to support multipoint data transmission with low complexity, low cost, and high reliability. So, we choose to use ZigBee. In addition, we designed and implemented data visualization on the web to ensure that the users can monitor their homes remotely. Experiments show that the intelligent smoke alarm system has a high reliability in data transmission and fire alarm, can monitor multiple scenes at the same time, and has high practicability.

In this paper, the combustion process is analyzed, and a variety of WLAN technologies and ML algorithms are compared. The sensor type of the system is given, and the usability and reliability of the system are tested through simulation experiments. Finally, the conclusion is given and the improvement scheme is put forward.

2.1. Changes in the Indicators in the Process of Conflagration

The conflagration is a disaster that is not controlled by man and caused by combustion [7]. The three basic elements of the fire are combustible, comburent, and ignition source. The combustible material is in the form of gas, solid, and liquid; “comburent” mainly refers to oxygen. For combustible gas combustion, according to the mixture of combustible gas and air, it can be divided into two different ways. If it is in the combustion before the air has been mixed with the gas, it is called premixed combustion; if the air and combustible gas do not enter the combustion state at the same time but are mixed and burned, this is called diffusion combustion. Liquid and solid substances are condensed matter, which is difficult to mix well with air. The basic process of combustion is as follows: when it gets enough energy from the outside, the condensed matter evaporates into steam or decomposes, and the combustible gas molecules, ashes, and unburned matter particles are suspended in the air, called aerosols. Usually, aerosol molecules are relatively small. During the production of aerosols, large molecules of solid or liquid particles are produced at the same time, known as smoke. But when burning, heat will be generated, causing a temperature rise, while generating a lot of smoke; with the temperature, pressure, and smoke dust parameters, it can be determined whether the fire occurred [8].

In general, combustibles while burning produce the following several forms of expression as shown in Figure 1: for liquid and solid combustible materials, the first produced is combustible gas, followed by smoke; in case of sufficient combustion, gas can only be fully burned, releasing a lot of heat to promote the current ambient temperature. In the process of fire, the initial stage produces a huge amount of smoke, but the temperature is not very high. If the detector at this stage begins to test, you can minimize the loss caused by the fire. After the fire starts, the fire will quickly spread and produce a lot of heat to the current environment, increasing the temperature and burning oxygen, so that the air pressure is reduced. If at this moment the current temperature and pressure can be effectively detected, the fire can be controlled.

Reviews

There are no reviews yet.

Be the first to review “Portable Smoke Detector In Best”

Your email address will not be published.