Gate Valve Landing Valve

Gate valve: An on-off valve that works by inserting a rectangular gate or wedge into the flow of the fluid. The fugitive emission standard for gate valves is covered by API 624 and ISO 15848-1. It should be noted that the stem motion in a gate valve is typically linear, which creates a lot of friction between the valve stem and packing. This friction can cause packing wear and tear as well as leakage. Gate valves are available in different types, such as slab, expanding and wedge. Wedge gate valves have a sealing element in the shape of a wedge. A wedge gate valve is a torque seated valve, meaning that the wedge is expanded from both sides due to the stem force and provides sealing. The expansion of the valve closure member due to the stem axial force is called “wedging effect.” Expanding gate valves are also torque seated valves with a closure member in two sections, one male and the other female. Slab gate valves have a flat disk or closure member that provides sealing due to the fluid pressure. Slab gate valves, unlike expanding and wedge gate valves, are not torque seated.
Gate valves have more height than ball valves due to their high body and upward stem and gate movement for rising stem design. The height of a gate valve could be considered a disadvantage, since it can impose a manifold structure with higher height. Usage of a linear actuator on top of a TCG valve could make the height differential even greater compared to an actuated ball valve. One should bear in mind that rack and pinion or scotch and yoke actuators, which are used for ball valve automation, stand horizontally when the valve is connected to a horizontal pipe, whereas linear actuators stand vertically when the TCG valve is connected to horizontally installed piping. Fig. 4.33 illustrates the height of an actuated slab gate valve.
Gate valves or ball valves are two typical valves used in the manifolds. Gate valves have a long history of use in subsea blowout preventer (BOP) stacks, trees, and manifolds and are considered relatively reliable devices because both the valve and the valve actuators have been through extensive development with proven field use and design improvements. Figure 19-6 illustrates two types of subsea gate valves. Figure 19-6A shows a WOM(Worldwide Oilfield Machine, Inc.) subsea gate valve with actuator, compensator, and ROV bucket. The hydraulic actuator is designed with a fail-safe model and spring returns with the ROV. The mechanical ROV is for backup. Figure 19-6B shows a WOM subsea gate valve with only an ROV bucket. Both valves are designed, built, and tested based on API 6A [6] and 17D [7], which can be used up to a water depth of 13,000 ft (4000 m).
Gate valves work by inserting a rectangular gate or wedge into the path of a flowing fluid. They are operated by a threaded stem which connects the actuator (generally a hand wheel or motor) to the stem of the gate. If the valve has a rising stem its position can be seen just by looking at the position of the stem. Fig. 5.2 shows the internals of a Gate Valve that is half open.
Gate valves are used when a straight-line flow of fluid and minimum flow restriction are needed. Gate valves use a sliding plate within the valve body to stop, limit, or permit full flow of fluids through the valve. The gate is usually wedge-shaped. When the valve is wide open, the gate is fully drawn into the valve bonnet. This leaves the flow passage through the valve fully open with no flow restrictions. Therefore, there is little or no pressure drop or flow restriction through the valve.

Gate valves are not suitable for throttling volume. The control of flow is difficult because of the valve’s design and the flow of fluid slapping against a partially open gate can cause extensive damage to the valve. Except as specifically authorized by the manufacturer, gate valves should not be used for throttling.

Gate valves are classified as either rising-stem or non-rising-stem valves. The non-rising-stem valve is shown in Figure 7-2. The stem is threaded into the gate. As the handwheel on the stem is rotated, the gate travels up or down the stem on the threads while the stem remains vertically stationary. This type of valve will almost always have a pointer indicator threaded onto the upp
A gate valve is generally used to completely shut off fluid flow or, in the fully open position, provide full flow in a pipeline. Thus it is used either in the fully closed or fully open positions. A gate valve consists of a valve body, seat and disc, a spindle, gland, and a wheel for operating the valve. The seat and the gate together perform the function of shutting off the flow of fluid. A typical gate valve is shown in Figure
ATEX and fire test requirements

Gate and globe valves can have fire test certificates according to API 6FA or ISO 10497 standards. The fire test certificate is not usually required for gate and globe valves with no nonmetallic parts. A fire test guarantees that the valve will function properly during a fire. ATEX is the European regulatory framework for manufacturing, installation, and use of equipment in explosive atmospheres. ATEX certification indicates that the valve does not have any source of ignition, which is applicable for equipment in potentially explosive atmospheres. Valves with actuators are usually in the ATEX scope of work because the ATEX directive does not consider the process source of ignition inside ATEX. Only external sources of ignition such as actuators with electrical parts make the valve fall inside ATEX.
Gate valves are characterized by a “gate” (Figures 4.49 and 4.50) that closes in a plane perpendicular to the flow of fluid. They are used primarily for on/off, nonthrottling service. Shearing of high-velocity flow will cause a partially open disk to vibrate and chatter, which will damage the seating surfaces and prevent a tight seal. They are suitable for most fluids including steam, water, oil, air, and gas. Gate valves may have either a solid or flexible wedge disk. In addition to on/off service, gate valves can be used for regulating flow, usually in sizes 6 in. and larger, but will chatter unless the disk is fully guided throughout travel.
A gate valve is a control valve that either allows media to flow through unobstructed or stops the fluid flow. The main advantage of a gate valve is the straight-through unobstructed passageway, which induces minimal pressure loss over the valve. The unobstructed bore of a gate valve also allows for a pig’s passage in cleaning pipe procedures, unlike butterfly valves. However, gate valves are slower than quarter-turn valves and should only be used in the fully open or closed position, not to regulate the flow. Automated gate valves exist with either an electric or pneumatic actuator, but a manual gate valve is cost-effective since gate valves are typically used infrequently. Gate valves are also commonly referred to as sluice gate valves.
Gate valve diagram & parts

A gate valve has seven main parts, which can be seen in Figure 3, which are: handwheel (A), stem (B), gasket (C), bonnet (D), valve body (E), flange (F), and gate (G). A flanged gate valve or threaded gate valve is the most common connection type to connect the valve to an application. In addition, depending on the specific design and application, the handwheel, stem, bonnet, and gate can have different designs to accommodate different applications. However, the main function of the gate valve parts remains the same. Continue reading to find those sections.
Gate valve operation

A gate valve operates similar to other valves. To open the valve, turn the hand wheel (A), which moves the gate (G) up or down on the stem (B) via the threads. A gate valve requires more than one 360° turn to open or close the valve fully. When the gate is lifted up, it opens the inlet to the outlet allowing an unobstructed passageway for the media to flow. When the gate is lowered, it closes and blocks the media flow.

The relationship between the gate’s vertical travel and the flow rate is nonlinear for a gate valve, with the greatest changes occurring near-complete closure. When used to regulate flow, the relatively high velocity of the flow at partial opening results in gate and seat wear, which along with possible vibrations of the gate, shortens the valve’s service life. Therefore, a gate valve should only be used for on/off control.
Gate valve actuation method

There are three main types of gate valve actuation methods:

Gate valve types

The gate comes in various designs and technologies to produce effective sealing for differing applications.
Knife gate valve

A knife gate valve is used for thick fluids and dry bulk solids. The gate is only one piece of metal, which is typically pointed like a knife. These valves are self-cleaning as they pass the seat rings every time they open and close.
Wedge gate valve

A wedge gate valve has a gate in the shape of a wedge that sits on two inclined seats, as seen in Figure 4 Labeled A. In addition to the primary force created by fluid pressure, a high wedging force on the seats created by the stems tightening assists with the sealing. The wedge-shaped gate does not stick to the seat in case of high fluid differential pressure and has an increased service life due to less “rubbing” on the seats. However, wedge-shaped gate valves have an additional compression load on the seats that may result in thermal binding and restricted valve opening due to expansion.
Parallel slide gate valve

A parallel slide gate valve has a flat gate and seats parallel to it. Parallel slide gate valves use line pressure and positioning to make a tight seal. Flat gates consist of two pieces and have a spring in the middle. The spring pushes the pieces towards the seats for enhanced sealing. Due to their inherent design, parallel gate valves have a safety advantage in higher temperature applications. Furthermore, since there is no wedging action in parallel gates, closing torques are comparatively smaller, resulting in smaller, less expensive actuators or less manual effort. Due to their sliding into position, parallel gates keep dirt away from the seating surfaces.
Slab gate valves

Slab gates, also called through-conduit gate valves, are one-unit gates that include a bore-size hole. The bore is in line with the two-seat rings in the open state. This alignment creates a smooth flow with minimal turbulence. This unique design allows for minimal pressure loss in the system and is perfect for the transportation of crude oil and natural gas liquids (NGLs). The valve seats remain clean. However, the disc cavity can capture foreign material. Therefore, the cavity typically has a built-in plug for maintenance purposes of draining the accumulated foreign material.
Parallel Expanding Gates

Expanding gate valves have two slab gates matched together that provide sealing through the mechanical expansion of the gate, as seen in Figure 5. When lifted, both of the slab gate’s cavities allow the media to flow. The upward force on one slab and the stoppage of the second slab, by a step in the valve body, allows for outward mechanical expansion for a proper seal. When closed, the slab gates block the media flow, and the downward force (stem) on one slab and upward force (step in valve body) allows for outward mechanical expansion for a proper seal.

These valves provide an effective seal simultaneously for both upstream and downstream seats. This seal makes them ideal for applications like isolation valves in power plants, block valves in process systems, and high-temperature valves in refineries.
Expanding gate functioning with the closed position (A) and the open position (B)

Leave a Reply

Your email address will not be published.

Best Way Traders (Pvt.) Ltd.